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a  b  s  t  r  a  c  t

When  one  encounters  a novel  stimulus  this  sets  off  a  cascade  of  brain  responses,  activating  several
neuromodulatory  systems.  As a consequence  novelty  has  a  wide  range  of  effects  on  cognition;  improving
perception  and  action,  increasing  motivation,  eliciting  exploratory  behavior,  and  promoting  learning.
Here,  we  review  these  benefits  and  how  they  may  arise  in the  brain.  We  propose  a  framework  that
organizes  novelty’s  effects  on brain  and cognition  into  three  groups.  First,  novelty  can  transiently  enhance
perception.  This  effect  is proposed  to be  mediated  by novel  stimuli  activating  the  amygdala  and  enhancing
early  sensory  processing.  Second,  novel  stimuli  can  increase  arousal,  leading  to  short-lived  effects  on
action  in  the  first hundreds  of  milliseconds  after  presentation.  We  argue  that  these  effects  are  related  to
deviance, rather  than to  novelty  per  se, and  link  them  to activation  of the  locus-coeruleus  norepinephrine
system.  Third,  spatial  novelty  may  trigger  the  dopaminergic  mesolimbic  system,  promoting  dopamine
release  in  the  hippocampus,  having  longer-lasting  effects,  up  to  tens  of minutes,  on  motivation,  reward
processing,  and  learning  and  memory.
C–NE
opamine
N/VTA
earning
emory
otivation
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. Introduction: Novelty’s effects on cognition

When colleagues came to visit Pavlov’s lab to see a demonstra-
ion of classical conditioning in his trained dogs, the animals failed
o show the conditioned response over and over again. The unfamil-
ar visitors distracted the dogs so much that they ‘forgot’ to show
he conditioned response to the conditioned stimulus. Pavlov called
his distracted response of the dogs an ‘investigatory reaction’, or

 ‘What-is-it’ reflex—this is now mostly known as the orienting
esponse (Sokolov, 1963; Sokolov, 1990). He argued that such a
esponse has biological significance (Pavlov and Anrep, 1927): The
apid detection and processing of novel stimuli is crucial to adapt
o current demands and explore new opportunities. On one hand,
ew stimuli pose novel opportunities that may  result in beneficial
utcomes, and on the other hand new stimuli may  pose a threat.

It is therefore not surprising that the detection of novelty
esults in a variety of brain responses, and has an immediate
ffect on cognition and behavior. The orienting response is one
f the most important characteristics of mammalian behavior,
nd is assumed to occur automatically (Chong et al., 2008; Escera
t al., 2000; Schomaker et al., 2014c; Tarbi et al., 2011). Recent
ndings in humans suggest that novelty elicits a wide range of
dditional effects on cognition. For example, novelty can strengthen
eward processing (Bunzeck et al., 2012; Guitart-Masip et al., 2010),
rive exploration (Düzel et al., 2010; Krebs et al., 2009), facil-

tate encoding of visual working memory (Mayer et al., 2011),
nhance perception (Schomaker and Meeter, 2012), and speed up
esponses (Schomaker and Meeter, 2014a). Animal studies have
hown that exploration of a novel environment promotes long-
erm potentiation (LTP) in the hippocampus, thereby improving

emory encoding (Davis et al., 2004; Li et al., 2003; Sajikumar and
rey, 2004; Sierra-Mercado et al., 2008; Straube et al., 2003a).

Novelty thus simultaneously enhances many cognitive func-
ions, allowing the brain to be optimally tuned to learn about and
espond to novel events. These effects are the topic of this review.

hich neural processes underlie them is not well understood yet.
ere, we will first discuss neuroscientific evidence of the brain’s

esponses to novel stimuli. Then we will review findings of nov-
lty’s beneficial effects, concentrating in turn on effects of novelty
n attention, task performance, and learning. Tying together find-
ngs from a range of experimental findings, we will argue that these
hree classes of effects are induced by different aspects of novelty
nd are mediated by at least three different mechanisms in the
rain. Fig. 1 provides an overview of the brain’s response to novelty
nd the putative functional architecture.

. The brain’s response to novelty

.1. Neural responses throughout the brain

Novel stimuli are processed differently than familiar ones. In
onhuman primates, single cell recordings have shown much
tronger neural firing to novel as compared to familiar stimuli in the
nferior temporal cortex (Li et al., 1993; Xiang and Brown, 1998). In
Please cite this article in press as: Schomaker, J., Meeter, M.,  Short- an
brain and cognition. Neurosci. Biobehav. Rev. (2015), http://dx.doi.org

umans, fMRI studies show stronger activity for novel compared
o familiar stimuli across a wide range of areas, including limbic
egions, frontal, temporal, parietal, and occipital areas (Hawco and
epage, 2014; Tulvin et al., 1996).
A wide range of novel stimuli have been used in the litera-
ture, which have varied in ways from control stimuli that may
reflect different aspects of novelty (see Section 2.2). Some areas
are consistently activated by these different types of novel stimuli.
For example, the fusiform gyrus, lingual gyrus and medial tempo-
ral cortex are especially strongly activated by a variety of novel
compared to familiar stimuli (e.g., novel environments: Kaplan
et al., 2014; novel fractals: Stoppel et al., 2009; novel pictures of
landscapes, animals, buildings, etc.: Yamaguchi et al., 2004; sur-
prising faces: Duan et al., 2010). Within the medial temporal lobe
the hippocampus, associated with novelty detection (Knight, 1996;
Lisman and Grace, 2005), is activated in particular by the explo-
ration of novel spatial environments (Bast et al., 2009; Jeewajee
et al., 2008; Kaplan et al., 2014; Lisman and Grace, 2005), with 

stronger stimulus-specific novelty signals in the adjacent perirhinal
cortex (Staresina et al., 2012). Moreover, novelty can drive activity
in the amygdala—on its own  and in interaction with emotional con-
tent (Blackford et al., 2010; Kiehl et al., 2005; Schwartz et al., 2003;
Wright et al., 2003; Zald, 2003).

New stimuli thus generate strong neural responses across many
higher perceptual and multimodal areas. Several mechanisms have
been invoked to explain why  novel stimuli would elicit strong
neural responses and familiar stimuli weaker ones. These include
sharpening of representations with repeated presentation (which
would reduce the population of neurons firing to familiar stimuli),
predictive coding (in which predictions suppress firing for familiar,
and thus predicted, stimuli), and a dominance of LTD over LTP in the
first presentations of a stimulus, reducing neural responses (Bogacz
and Brown, 2003; Meeter et al., 2005; Segaert et al., 2013). As yet
it remains unclear to what extent these mechanisms underlie the
brain’s response to novelty.

2.2. Psychophysiological indices of novelty and deviance

Several psychophysiological indices of novelty processing have
been identified using the novelty oddball task while the brain’s
response is measured using the electroencephalogram (EEG) tech-
nique. In the novelty oddball task frequent repeated standard
stimuli, infrequent targets (the ‘oddballs’), and infrequent deviant
non-repeated novel stimuli are presented in random sequence
(Courchesne et al., 1975). The stimuli can be presented in any
sensory modality, but usually visual or auditory stimuli are used.
The novel stimulus typically elicits several event-related potential
(ERP) components associated with novelty processing, such as a
large anterior N2 component (also referred to as N2b), and a large
novelty P3 component peaking over frontocentral regions.

These components may  reflect responses to different forms of
novelty. When a stimulus has never been seen, felt, or heard before
by the observer it is novel, but a stimulus may  also be novel only
in the context of the experiment—the first is referred to as stimulus
novelty and the latter as contextual novelty. Moreover, an environ-
ment can be novel, even though it contains only objects familiar to
the observer (e.g., a never-visited classroom will be novel to a stu-
dent, even though it may  look like other classrooms (s)he knows).
There are reasons, discussed below, to assume that spatial novelty
d long-lasting consequences of novelty, deviance and surprise on
/10.1016/j.neubiorev.2015.05.002

has different consequences for brain and behavior than stimulus or
contextual novelty.

Novel stimuli may  also deviate from the other stimuli presented
in the same experiment, and may  therefore be surprising to the
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Fig. 1. Overview of the effects of novel stimuli on the brain and cognition. A stimulus can be deviant in addition to novel when it deviates from other stimuli in the context
(e.g.,  as in an experiment in which a fractal is presented between simple standard triangles. See for example Schomaker et al., 2014d). Some of the effects of a novel stimulus
are  due to novelty itself, while other effects are more sensitive to deviance. Other effects of novelty have mostly been observed in nonhuman animals and humans during and
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fter  exploring novel environments (spatial novelty–here exemplified by a scene fro
o  spatial novelty, or whether they can also be elicited by novel stimuli (as indica
ortex;  DA = dopamine; LC–NE = locus coeruleus norepinephrine system; SN/VTA = s

bserver. Stimuli can deviate from other stimuli without being
ovel—e.g., a picture of dog is a deviant in an experiment in which
bservers categorize images of furniture, but that does not make
t necessarily novel (see Table 1 for a summary of these concepts).
lthough the concepts of deviance and surprise are thus readily
issociable from novelty, in typical visual novelty oddball exper-

ments they are confounded: Novel stimuli also deviate strongly
rom the standard stimuli with which they are compared, and they
re usually presented at low frequencies which may make them
nexpected or surprising to the observer. The question therefore
emains which aspect – novelty, deviance, or surprise – actually
licits neural responses usually ascribed to novelty.

The anterior N2, an early ERP component elicited by novel
timuli, peaks over frontal scalp regions around 250–300 ms  for
isual stimuli. It is not affected by the context set up by standard
timuli or by the frequency with which novel stimuli occur, sug-
esting that it is a response to novelty, not deviance, and that it is
ot sensitive to context, task relevance or expectations (Schomaker
t al., 2014d; Chong et al., 2008; Tarbi et al., 2011; Schomaker and
eeter, 2014a). Although it is affected by attention, it may  be so in
Please cite this article in press as: Schomaker, J., Meeter, M.,  Short- an
brain and cognition. Neurosci. Biobehav. Rev. (2015), http://dx.doi.org

n untypical way: When attention is engaged in a difficult work-
ng memory task, the anterior N2 to task-irrelevant novel stimuli
s larger than when attention is available, suggesting that atten-
ion is required to suppress the initial processing of novel stimuli

able 1
oncepts related to novelty, with a description and examples of stimuli.

Concept Description 

1. Stimulus novelty Unfamiliar, never experienced before. Different fro
anything stored in long-term memory

2.  Contextual novelty Differs from other stimuli shown in the context (e.
the experiment), but has been seen pre-experimen

3.  Spatial
novelty/environmental novelty

Novelty of the environment rather than of a single
stimulus

4.  Deviance Infrequent category that is dissimilar to other stim

5.  Surprise/unexpectedness Violates expectancies, due to deviations from expl
predictions
rtual reality environment). It is an open question, whether these effects are specific
 the dashed line). See main text for further explanations. ACC = anterior cingulate
ntia nigra/ventral tegmental area; Ach = acetylcholine.

(Schomaker and Meeter, 2014b). This suggests that the anterior N2
is a reflexive response to novelty, reflecting an automatic novelty
detection process (Chong et al., 2008; Tarbi et al., 2011). Alterna-
tively, it may  simply reflect the stronger neural response to novel
stimuli elicited in higher perceptual areas. In line with the latter
idea, a perceptual response to novel stimuli that are not attended
has been found in the lingual gyrus, a brain region in the ventral
visual stream (Stoppel et al., 2009). This perceptual response may
be related to the increased firing rate seen in electrophysiological
responses to stimulus novelty. It may  thus be that a novel stimulus
is a ‘loud’ stimulus in terms of neural firing, and that this is the basis
of the anterior N2. A reason for this could be that stimuli typically
have to be complex to be novel, as simple stimuli probably have
been encountered before or will at least resemble previous sensory
input to some extent. The lingual gyrus thus may be related to the
early perceptual processing of novelty, however, rigorous source
localization studies linking the anterior N2 and lingual gyrus are
still needed.

A somewhat later ERP component elicited by novel stimuli is
the novelty P3 (Courchesne et al. (1975). Another component, the
d long-lasting consequences of novelty, deviance and surprise on
/10.1016/j.neubiorev.2015.05.002

P3a elicited in response to unexpected stimuli, has very similar
characteristics as the novelty P3; it peaks frontally and in the same
time-window (Squires et al., 1975). In fact, using a factor analysis
the two components could not be distinguished, suggesting they

Example

m Unfamiliar stimuli, like fractals or objects that are difficult to
categorize (Courchesne et al., 1975; Daffner et al., 2000a,b; Stoppel
et  al., 2009; Schomaker and Meeter, 2012)

g,
tally

Non-repeated images of familiar scenes, letters, well-known symbols
(Polich and Comerchero, 2003; Friedman and Cycowicz, 2007;
Barkaszi et al., 2013)
Unfamiliarized (virtual) environment (Straube et al., 2003a,b; Q13
Schomaker et al., 2014b)

uli Stimuli such as infrequent grating patterns, that typically elicit visual
mismatch negativity (vMMN; e.g. Czigler et al., 2002; Liu and Shi, 2008)

icit Unanticipated stimulus sequence, such as unpredicted action effects
(Waszak and Herwig, 2007; Iwanaga and Nittono, 2010)
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Fig. 2. Anterior N2 and P3 Subcomponents. The anterior N2 and novelty P3 (or
P3a) peak over frontal regions, whereas the target P3b peaks somewhat later over
posterior regions. Topographic plots reflect data from a principal component anal-
ysis  parsing the novelty P3 and P3b elicited by novels and targets respectively in a
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flashes (Grant et al., 1988; Rasmussen et al., 1986). As has been
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isual novelty oddball paradigm, and the corresponding grand-average ERPs from
chomaker and Meeter (2014b).

eflect the same process (Simons et al., 2001). The novelty P3 can
e distinguished, however, from the somewhat later P3b (or P300)
omponent (Spencer et al., 1999, 2001). This component peaks over
osterior regions and has been associated with memory-related
rocesses (Polich, 2007; Polich and Criado, 2006), although others
ave argued that it reflects task-related decision-making processes
ather than memory (Verleger, 2008). In an oddball paradigm, espe-
ially targets elicit a large amplitude P3b. Novel stimuli also elicit

 P3b, but with a smaller amplitude (He et al., 2001). Fig. 2 shows
he characteristics of the novelty-related ERP components.

The novelty P3 has previously been suggested to be a psy-
hophysiological index of the involuntary orienting response
Escera et al., 2000; Escera et al., 2001). Others, however, have
rgued that it reflects the voluntary orienting of attention to deviant
r novel information (Berti, 2008; Chong et al., 2008; Chong et al.,
008). Recent findings have suggested that the novelty P3 is elicited
nly when the novel stimulus is potentially task-relevant, and must
hus be evaluated (Schomaker and Meeter, 2014b). Moreover, other
ecent findings showed it is strongly dependent on the context in
hich the novel stimulus is presented. Schomaker et al. (2014d)
resented novel images of impossible objects either in in a task
ominated by complex dot clouds or in a task dominated by sim-
le geometrical figures. They found that the novel images elicited a
uch smaller novelty P3 when presented in the context of complex

ot clouds, than in the context of simple geometrical figures. A sim-
lar reduced novelty P3 was observed when novel stimuli (in this
ase complex fractals) were the most frequent stimulus category
see Fig. 1). This suggests that the novelty P3 is not a response to
ovelty per se – as the impossible objects and fractals were novel

n all situations – but to deviance; to be exact, the novelty P3 is
nly elicited by stimuli deviating from a context of stimuli that are
qually or less complex than the deviants (also see Barkaszi et al.,
013). Note that stimulus complexity can be defined in many ways,
ut all definitions have in common that more complex stimuli have

 large variety of features that cannot be easily compressed (e.g.,
Please cite this article in press as: Schomaker, J., Meeter, M.,  Short- an
brain and cognition. Neurosci. Biobehav. Rev. (2015), http://dx.doi.org

igau et al., 2005).
With this reconceptualization of the novelty P3, the similarity

etween the novelty P3 and the P3a component becomes even
 PRESS
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more striking, as the P3a is elicited by non-novel stimuli that
deviate from other stimuli in an experiment (e.g., a blue square
amongst blue circles; Conroy and Polich, 2007). Interestingly, the
P3a has been sourced to the same anterior cingulate and prefrontal
cortex network that is also involved in error processing (Wessel
et al., 2012, 2014), suggesting that deviance detection is in some
ways similar to the detection of errors. It has been suggested that
responses to deviance actually reflect prediction errors: Standard
stimuli set up a prediction that is violated by deviant stimuli. This
violation would then result in a brain response that underlies the
novelty P3 (Schomaker et al., 2014a,d).

Overall, recent psychophysiological evidence thus suggests that
the brain generates dissociable responses to novelty and deviance.
This is an important result, since especially in clinical studies,
the psychophysiological responses to novelty as elicited in visual
novelty oddball tasks have been proposed as a tool for diagnos-
ing neuropsychiatric disorders (Bruder et al., 2001; Stevens et al.,
2007). For example, in schizophrenia the novelty P3 to novel stimuli
is often reduced, which is interpreted as a disturbance of the orien-
ting response towards novelty (Cortinas et al., 2008; Devrim-Ucok
et al., 2006). The evidence presented above suggests that this reduc-
tion could be due not only to an impaired orienting response,
but also to a failure to form predictions of events. Indeed, it has
been argued that schizophrenic patients have trouble anticipating
upcoming events, and that this deficit may  underlie their mis-
perceptions of the world, possibly, contributing to some of their
psychotic symptoms (Ford and Mathalon, 2012; Frith et al., 2000).

2.3. Neuromodulatory responses to novelty

Some of the major neurotransmitter systems have been asso-
ciated with novelty processing. Unexpected novel stimuli can
activate the locus coeruleus (LC), releasing norepinephrine (NE;
Vankov et al., 1995; Sara et al., 1994), and novel environments
and pictures of unknown scenes (which are novel but not deviant)
are known to stimulate both dopaminergic neurons in the subs-
tantia nigra and the ventral tegmental area (SN/VTA) promoting
dopamine (DA) release (Bunzeck and Düzel, 2006; Li et al., 2003).
Moreover, novel environments and exploration are known to
increase acetylcholine (ACh) efflux (Giovannini et al., 2001). It is
not yet clear, however, how novelty stimulates the release of DA,
ACh and NE: Novel stimuli could directly activate the noradrener-
gic, cholinergic, and dopaminergic neurons, or indirectly through a
novelty signal generated in other regions. Several computational
models have proposed that the hippocampus generates a nov-
elty signal, which then drives the medial septum to release ACh
(Hasselmo, 2006; Meeter et al., 2005), and/or the VTA to release
DA (Lisman and Grace, 2005). The central idea in these models is
that the hippocampus, through a functional loop, regulates its own
plasticity in response to novelty. Little direct empirical evidence
has so far been found to support this conjecture; however, it still
enjoys support, perhaps because alternative models have not yet
been proposed.

While a hippocampal novelty signal could possibly drive ACh
and DA release in response to novelty, it almost certainly does not
drive NE release. The LC responds very swiftly to stimuli, at about
110 ms  in primates (Bouret and Richmond, 2009). A hippocampal
response to stimuli is often detected not before 200 ms (Jutras and
Buffalo, 2010), which would be after the LC response. A simpler
explanation is suggested by findings that the LC is strongly driven
by responses that are simply loud or complex: loud noises, bright
d long-lasting consequences of novelty, deviance and surprise on
/10.1016/j.neubiorev.2015.05.002

discussed above, novel stimuli are typically complex and generate
stronger responses across a wide set of perceptual areas than famil-
iar stimuli. It may  be that it is this neural loudness that drives LC
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ctivity: LC may  simply respond to any surge in cortical input it
eceives.

These three neuromodulators (DA, ACh, and NE) are released
idely through the brain, can stimulate learning, and could plausi-

ly be related to some or all aspects of the brain’s novelty response
ACh: Hasselmo, 1995; Meeter et al., 2004; DA: Lisman and Grace,
005; NE: Nieuwenhuis et al., 2005). Nevertheless, it has never been
stablished whether they, in isolation or in combination, underlie
ovelty’s consequences for cognition and behavior. We  will now
iscuss these consequences in turn, starting with the effects of
ovelty on attention.

. Attention to novelty

The central characteristic of the orienting response is that the
rganism orients towards the stimulus that elicits it. Novel stimuli
hus attract attention, also when there is no incentive to pay atten-
ion to them, and even when performance on ongoing tasks suffers.
onsistent with novel stimuli attracting attention, novel stimuli
re encoded better into visual working memory than familiar ones
Mayer et al., 2011, 2014). Mayer and colleagues suggested that
his effect was mediated by more efficient allocation of attentional
esources to novel than to familiar items, rather than to low-level
timulus characteristics. Another line of research has shown that
hen participants have to report the location of a probed word in

n array, they respond faster and more accurately to novel as com-
ared to repeated familiar words. This has been called the novel
opout phenomenon (Johnston and Schwarting, 1997; Reicher et al.,
976), and is also believed to rely on attentional processes (Strayer
nd Johnston, 2000). The reliability of the effect, however, has been
uestioned and the results have also been explained as effects of
ognitive load (for a critical view see Christie and Klein, 1996), or
nter-item associations (Diliberto et al., 1998).

The fact that novel stimuli capture attention has consequences
or task performance. The orienting response to novel stimuli
an pull attention away from task-related processes, resulting in
istraction (Naatanen, 1992). Distraction by task-irrelevant novel
ounds has been shown to, for example, prolong reaction times and
educe accuracy on a task in which images had to be categorized
Wetzel et al., 2013). Such effects occur across as well as within
ensory modalities, and have been reported for the visual modality
Bendixen et al., 2010; Berti and Schroger, 2006), auditory modal-
ty (Berti and Schroger, 2004; Escera et al., 2000; Parmentier and
ndres, 2010; Parmentier et al., 2011a,c; Wetzel et al., 2006, 2013),
nd tactile modality (Ljungberg and Parmentier, 2012; Parmentier
t al., 2011b).

Through its effects on attention, novelty can also sharpen per-
eption. These effects on perception have interesting similarities to
hose of emotional stimuli. In a typical emotional cueing paradigm,
mages of faces acting as cues are followed by a low contrast stim-
lus that is difficult to see. Faces with a negative emotional relative
o a neutral expression have consistently been shown to enhance
erception of a subsequently presented target (for a comprehensive
eview see Phelps, 2006). Although much remains to be clarified,
motional stimuli are believed to enhance perception through acti-
ation of the amygdala, then strengthening sensory processing via
he amygdala’s connections with the visual cortex (Anderson and
helps, 2001; Morris et al., 1998). In an adapted version of such

 paradigm emotionally neutral novel or familiar fractal images
cted as cues. The novel images increased sensitivity to shortly pre-
ented (low contrast) visual targets compared to familiar images
Please cite this article in press as: Schomaker, J., Meeter, M.,  Short- an
brain and cognition. Neurosci. Biobehav. Rev. (2015), http://dx.doi.org

Schomaker and Meeter, 2012). Novel iamges also led to a more
onservative response criterion, which is consistent with known
ffects of attention (Rahnev et al., 2011). Notably, the novel images
n this experiment were not deviant (i.e., they did not deviate as
 PRESS
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a category from the familiar images in the experiment), suggest-
ing that the effects on perception were a response to novelty, not
deviance.

The orienting response towards novelty has been associated
with the same motivational circuits that underlie the attentional
response to emotionally significant information (Bradley, 2009;
Weierich et al., 2010). Indeed, although the amygdala is mostly
known for its role in processing emotional stimuli, it also responds
to neutral novel images (Blackford et al., 2010; Kiehl et al., 2005;
Schwartz et al., 2003; Wright et al., 2003; Zald, 2003). Moreover,
amygdalar responses to emotional stimuli are strongly modulated
by the novelty of those images, suggesting that novelty is integral
to the amygdala’s function (Weierich et al., 2010). Novelty could
thus enhance perception via the same mechanisms as by which
emotional stimuli are thought to enhance perception.

4. Facilitating task performance

Novelty’s distracting effects on behavior, through capture of
attention as discussed above, are well established. However, the
orienting response can also have exactly the opposite consequence.
The orienting response has been suggested to include a call for
processing resources (Filion et al., 1991; SanMiguel et al., 2010b;
Zimmer, 1992), eliciting a general increase in arousal and atten-
tional resources. Such increases could be stimulus-aspecific and
spill over to other stimuli presented in the temporal and/or spa-
tial vicinity, enhancing their processing (Aston-Jones and Cohen,
2005b). A variety of studies have suggested that the transient
increase in arousal and/or attention due to novelty can indeed
have a range of positive effects on task performance (DiGirolamo,
1998; SanMiguel et al., 2010a,b; Wetzel et al., 2012; Schomaker and
Meeter, 2012, 2014a). These effects will now be discussed.

4.1. When distraction becomes facilitation: Requirements for
novelty’s short-lived beneficial effects on behavior

Whether new information results in distraction or facilitation
of performance depends on several factors. First, behavioral dis-
traction typically occurs when the novel stimuli are informative
about target occurrence and time of appearance, but not when they
are uninformative (Parmentier et al., 2010; Wetzel et al., 2012,
2013). For example, when a deviant novel sound (i.e. a burst of
white noise) provides information about the onset of a visual target
digit, further processing of the novel sound is required, resulting in
behavioral distraction (Parmentier et al., 2010). In contrast, when
the same sound is entirely task-irrelevant such further processing
is not required—and distraction does not occur.

Second, whether distraction or facilitation occurs depends on
the attentional demands of the task at hand: When demands are
low novelty results in facilitation, while when demands are high
novelty results in distraction (Lv et al., 2010; SanMiguel et al.,
2010a; Schomaker and Meeter, 2014a,b). In one study, novel sounds
resulted in faster classification (of face vs. scrambled face), and
better recognition memory when working memory load was low
(no memory load, or remebering a single face; SanMiguel et al.,
2010a). When working memory load was high (remembering three
faces), novel sounds decreased performance. A reason for this could
be that in a task with low attentional demands, attention may
wander (Forster and Lavie, 2009; Lavie, 1995). Novel stimuli may
improve performance by refocusing attentional resources or by
eliciting a general alerting response. In this case any distracting
d long-lasting consequences of novelty, deviance and surprise on
/10.1016/j.neubiorev.2015.05.002

effect of novelty, the ‘orienting cost’, is outweighed by an ‘alerting
benefit’ (SanMiguel et al., 2010a). In contrast, when demands are
high, all attentional resources are already used to perform the task
(Kahneman, 1973), leaving no room for a novelty-induced alerting
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drive to explore new environments, in order to survive (Panksepp,
1998). Also in present day lifestyles curiosity may  help survival:
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enefit. Furthermore, the depletion of attentional resources may
esult in a failure to suppress task-irrelevant (novel) stimuli (Lv
t al., 2010; Schomaker and Meeter, 2014b), resulting in increased
istraction by the novel stimuli.

A third variable of importance is the context in which the novel
timulus occurs. In a task by Schomaker and Meeter (2014a) par-
icipants responded to an auditory target while viewing a stream
f novel and standard visual stimuli. Novel visual stimuli facili-
ated responses to the auditory targets, but only when they were
nfrequent, deviant, and visually more complex than other stimuli
n the stream (the stimulus context). When the stimulus context

as as complex as the novel stimuli or more so, no such facilita-
ion was found, even though novel stimuli can enhance perception
nder these circumstances (see Section 3; Schomaker and Meeter,
012). It thus seems that novel stimuli always elicit an attentional
esponse (enhancing perception, possibly contributing to speeded
esponses as well), but have a more prominent arousing effect when
hey deviate from a simple stimulus context. This suggestion of dif-
erential effects on attention and arousal is supported by an analysis
f response bias, which has been argued to be differently affected by
ttention and arousal (Rahnev et al., 2011). Novel stimuli engender

 more conservative response criterion, associated with increases
n attention (Rahnev et al., 2011), when the stimulus context is
omplex (Schomaker et al., 2015), but a more liberal one, asso-
iated with arousal, when the context is simple (Experiment 3
n Schomaker and Meeter, 2014a). A reason for such discrepant
ffects may  be related to differences in processing demands for
imple versus complex stimuli. As described above, the effects of
rousal become more prominent when task demands are low. Sim-
le stimuli have lower processing demands than complex stimuli,
hich may  have the same effect as low task demands: leaving more

oom for an alerting benefit.
Interestingly, the conditions in which novelty results in facil-

tation of responses are strikingly similar to those in which the
ovelty P3 is elicited: Only deviant, complex stimuli elicit facili-
ation and the frontal novelty P3 (Barkaszi et al., 2013; Schomaker
t al., 2014d). Indeed, although in the literature the novelty P3 has
ften been associated with behavioral distraction (Berti et al., 2004;
erti and Schroger, 2001, 2004; Escera et al., 2001; Munka and Berti,
006; SanMiguel et al., 2008, 2010b; Schroger et al., 2000; Schroger
nd Wolff, 1998), some studies have instead hinted to a dissociation
etween the two. Wetzel et al. (2013) found that the novelty P3 is
utomatically elicited by environmental novel sounds and deviant
ursts of white noise, but that consequences for behavior depend
n whether target-related information is conveyed (i.e. distraction
nly occurs when the deviant/novel provides info regarding the
ime and probability of target occurrence in a visual classification
ask). Moreover, the novelty P3 has been associated with improved
ask performance. SanMiguel et al. (2010b) found that responses to
isual targets on a simple classification task (face/scrambled face)
ere facilitated during the presentation of novel sounds that also

licited a novelty P3. In other words, the novelty P3 does not always
eflect distraction (an ‘orienting cost’), but can also reflect alerting
ffects that underlie the facilitation of target processing (SanMiguel
t al., 2010b). One other study directly linked the novelty P3 to
eneficial effects. In a visual two-choice task, the novelty P3 was
nhanced in children with attention deficit hyperactivity disorder
ADHD) compared to the normal control group, while at the same
ime omission errors were reduced for the children with ADHD (van

ourik et al., 2007). The authors argued that “distraction can have
eneficial effects”. Wetzel et al. (2013) found that a frontal novelty
3 for novel stimuli resulted in facilitation, while no facilitation
as found for deviants that elicited a more central P3 compo-
ent. Thus, the same mechanism may  underlie both the frontal
Please cite this article in press as: Schomaker, J., Meeter, M.,  Short- an
brain and cognition. Neurosci. Biobehav. Rev. (2015), http://dx.doi.org

ovelty P3 ERP component and novelty’s beneficial effects on
ehavior.
 PRESS
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4.2. Facilitation: The novelty P3 and the role of the LC–NE system

Indeed, both novelty’s facilitating effects and the P3 have been
associated with the LC–NE system (Donchin, 1981; Nieuwenhuis
et al., 2005, 2010; Wetzel et al., 2012). The P3 has been shown to
depend on NE in several ways. For example, a P3-like response in
monkeys was fully attenuated when the LC was lesioned (Pineda
et al., 1989), and by a psychopharmacological intervention that
depletes NE (Swick et al., 1994a,b). In turn, novelty can drive LC
phasic activity. For example, strong bursts of activity were seen
in a large population of noradrenergic neurons of the LC in rats
that were placed in a novel environment (Sara et al., 1994; Vankov
et al., 1995). In humans the P3 has been related to pupil diam-
eter (Murphy et al., 2011), which itself is believed to reflect LC
activity (Murphy et al., 2014; Nieuwenhuis et al., 2005; Phillips
et al., 2000). Prestimulus pupil size and P3 exhibited an inverted
U-shape relation, with large P3 amplitudes being associated with
intermediate pupil diameter and optimal task performance on a
visual oddball task (Murphy et al., 2011). Similarly, several genes
affecting noradrenergic pathways have been related to P3 ampli-
tude using an independent component analysis, linking genotypes
to psychophysiological data (Liu et al., 2009).

As noted above, there are different P3 subcomponents that
have different neural generators and are associated with different
processes. Polich (2007) suggested that a parietal noradrenergic
system underlies the P3b, whereas the dopaminergic system was
proposed to play a role in the generation of the frontal novelty
P3/P3a. However, there are reasons to believe the novelty P3 is
also related to the noradrenergic LC–NE system. The LC is con-
nected to the anterior cingulate cortex (ACC), orbitofrontal cortex
(OFC; Aston-Jones and Cohen, 2005a,b), and prefrontal cortex (Sara,
2009), which are all suggested to be sources of the novelty P3 (ACC:
Dien et al., 2003; prefrontal cortex: Knight, 1984; OFC and ACC:
Lovstad et al., 2012)—supporting a role of the noradrenergic system
in eliciting the novelty P3.

It is thus possible that the LC–NE response to novelty is both
related to the novelty P3 and underlies novelty’s subsequent facil-
itatory effects on behavior. The strongest arguments in favor of
such a link are the similarity of conditions eliciting facilitation and
the novelty P3, and the timing of the effects. Effect of NE have
been argued to peak 100–200 ms  post-stimulus (Aston-Jones and
Cohen, 2005a,b; Nieuwenhuis et al., 2005), which is exactly the
time frame in which novelty facilitates responses (Schomaker and
Meeter, 2014a). However, direct evidence for the putative relations
between LC–NE, the novelty P3 and facilitatory effects of novelty is
still lacking.

5. Effects on learning and exploration

Since a novel stimulus or novel environment by definition pro-
vides opportunities for learning, many theories have suggested that
novelty elicits a learning signal (Hasselmo et al., 1996; Meeter et al.,
2005; Recce and Harris, 1996; Tulving and Kroll, 1995). Indeed,
it seems that spatial novelty triggers exploration and facilitates
neuroplasticity, although such effects have been more scarcely
reported for stimulus novelty.

5.1. Novelty’s exploration bonus: The lure of the unknown

Exploring new opportunities and environments is a crucial
aspect of mammalian behavior. In fact, foraging species must have a
d long-lasting consequences of novelty, deviance and surprise on
/10.1016/j.neubiorev.2015.05.002

Senior citizens with higher curiosity were found to have better
chances of being alive and healthy five years later (Swan and
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armelli, 1996), and openness to actions has been associated with
ongevity (Jonassaint et al., 2007). An interest in the new can thus be
eneficial, and may  also be required to detect potential threats and
vert harm. To optimally adapt behavior to the current situation
he brain has to make a trade-off between exploiting well-known
ources of reward on the one hand, and exploring new objects
nd situations on the other that may  signal more profitable out-
omes—or an unknown source of threat.

It has been suggested by computational theories of reinforce-
ent learning that novelty may  promote exploratory behavior

ovelty by eliciting an ‘exploration bonus’ (or novelty bonus), moti-
ating exploratory behavior in search for reward (Düzel et al., 2010;
akade and Dayan, 2002; Knutson and Cooper, 2006). This idea has
een worked out in a theory: NOvelty-related Motivation of Antici-
ation and exploration by Dopamine or NOMAD (Düzel et al., 2010).
OMAD suggests that perceiving a novel stimulus results in both

emporally specific phasic bursts of DA, which increases plastic-
ty both for storage of the novel stimulus itself and of stimuli that
ollow it, and an increase in tonic DA levels. Moreover, the mere
nticipation of novelty would already lead to an increase in tonic
A levels. This increase in tonic activity would in turn enhance

eward anticipation and promote exploratory behavior.
Empirical evidence for this theory has shown that novel stimuli

nd anticipation of novel stimuli can indeed activate the dopa-
inergic reward system, enhancing reward prediction responses

Bunzeck et al., 2012; Wittmann et al., 2007), and ensuring that
ovel opportunities are evaluated and potential risks are assessed
ntil the outcome is known (Krebs et al., 2009). Moreover, nov-
lty increases phasic DA release in the striatum to reward (Bunzeck
t al., 2007; Guitart-Masip et al., 2010; Krebs et al., 2011; Lisman
nd Grace, 2005). In addition, VTA activity caused by reward antic-
pation was found to be correlated with better episodic memory,
uggesting that DA release can indeed boost memory (Murty and
dcock, 2014). In the other direction, reward can accelerate nov-
lty processing (Bunzeck et al., 2009), a process believed to be
ontrolled by DA, that also modulates memory retrieval perfor-
ance (Apitz and Bunzeck, 2013; Eckart and Bunzeck, 2013; for

 review on the link between dopamine and memory see Shohamy
nd Adcock, 2010).

However, the link between novelty and learning has also been
ssociated with other neuromodulatory systems. In particular,
E has also been implicated in novelty-induced learning ben-
fits, specifically in nonhuman animals (Straube et al., 2003b;
ara, 2009; Harley, 2007; Madison and Nicoll, 1986). NE increases
he excitability of neurons in the dentate gyrus and promotes
ong-term potentiation (LTP; Kitchigina et al., 1997; Kemp and

anahan-Vaughn, 2008; Klukowski and Harley, 1994), a mecha-
ism believed to underlie the formation of memories (Cooke and
liss, 2006).

.2. Novelty’s long-lasting beneficial effects: Promoting memory

Animal studies have repeatedly shown that exploration of a
ovel compared to a familiar environment can promote learn-

ng. Neurophysiologically, it can increase LTP in the hippocampus,
hereby improving memory encoding (Davis et al., 2004; McGaugh,
005; Uzakov et al., 2005). In one example, after exploring new
nvironments early LTP in rats was turned into long-LTP in the hip-
ocampus, specifically in the dentate gyrus, whereas it was  not after
xposure to a familiar environment (Straube et al., 2003b). Behav-
orally, an effect of novelty on learning has been shown for example
or taste memory: A strong novel taste can facilitate memory for-
Please cite this article in press as: Schomaker, J., Meeter, M.,  Short- an
brain and cognition. Neurosci. Biobehav. Rev. (2015), http://dx.doi.org

ation for a different weak taste in rats (Merhav and Rosenblum,
008). The beneficial effects of exploring a novel environment on

earning and memory may  also be partially caused by effects on
rousal: Exploration of novel environments results in increases in
 PRESS
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arousal and locomotor acitivity (Moser et al., 1994), which in turn
can promote LTP and learning as mediated by noradrenergic activ-
ity (Sara et al., 1994; Vankov et al., 1995; Cahill and McGaugh,
1998).

In humans the idea that novelty can enhance memory for
unrelated information is less extensively researched, but several
studies hint towards such an enhancing effect as well. Wittmann
et al. (2007) found that anticipation of novelty activated both the
hippocampus and SN/VTA; in a separate behavioral experiment
they also found that anticipated novel items were remembered
in a way that yielded better recollection a day later, relative to
unanticipated novel items. One functional magnetic resonance
imaging (fMRI) study provides evidence for the idea that experi-
encing (in addition to anticipating) novelty can enhance memory in
humans. Participants were first exposed to a series of either novel
or familiar scenes, and then had to study a list of words. When
participants had been exposed to the novel scenes, they had bet-
ter recollection and free recall of the words than when exposed to
familiar scenes (Fenker et al., 2008). Novelty co-activated both the
SN/VTA and hippocampus; however, this did not correlate with the
memory enhancements. Recently, we  investigated whether active
exploration of a novel environment also enhances learning on an
unrelated task in humans. In a within-subjects design participants
explored a novel and a previously familiarized virtual environment,
after which they performed a word learning task. Exploration of a
novel as opposed to familiar environment enhanced recall, believed
to be hippocampus-dependent, but not recognition memory, a type
of memory believed to be relatively hippocampus-independent
(Schomaker et al., 2014b).

Several studies have also looked at novelty’s effects on encod-
ing at the level of single items. One such study, using pupillometry,
found that pupil constriction during encoding was  stronger for
complex natural visual scenes that were later remembered, and for
novel compared to familiar scenes at retrieval (Naber et al., 2013).
Remarkably, pupil constriction was  also strong for familiar items
that were misjudged as novel. Therefore the authors argued that
pupil constriction reflects subjective novelty, which itself has been
argued to be associated with the strength of memory formation
(Kishiyama et al., 2004; Knight, 1996; Lisman and Grace, 2005).

Two  item-level effects also seem to point to a beneficial role
of novelty on encoding. The Novelty Effect consists of better recog-
nition memory for new items than for items that were previously
familiarized in a preceding phase (Kormi-Nouri et al., 2005; Tulving
et al., 1994; Tulving and Kroll, 1995). The second is the Von Restorff
effect, which denotes better memory for words presented in a
deviant, novel font than for words presented in a standard font
(Bruce and Gaines, 1976; Geraci and Manzano, 2010; Von Restorff,
1933; Schmidt, 1985), and for objects presented in novel rather
than standard colors (Kishiyama et al., 2004, 2009). Interestingly,
the Von Restorff effect is further enhanced by the D1/D2 recep-
tor agonist apomorphine in humans (Rangel-Gomez et al., 2013),
and is reduced in Parkinson’s patients that have abnormalities in
dopaminergic functioning (Schomaker et al., 2014a).

Several neuromodulatory systems have been suggested to
underlie the effects of novelty on learning, such as dopaminer-
gic inputs (Lemon and Manahan-Vaughan, 2006; Li et al., 2003;
Lisman and Grace, 2005; Roggenhofer et al., 2010; Sajikumar
and Frey, 2004), noradrenergic inputs (Kitchigina et al., 1997;
Straube et al., 2003a; Uzakov et al., 2005; Vankov et al., 1995)
through beta-adrenoreceptors (Kemp and Manahan-Vaughan,
2008), and cholinergic inputs (Barry et al., 2012; Bergado et al.,
2007; Hasselmo, 1999; Meeter et al., 2004). The dopaminergic
d long-lasting consequences of novelty, deviance and surprise on
/10.1016/j.neubiorev.2015.05.002

and noradrenergic systems have also been suggested to medi-
ate these effects in concert, working through their reciprocal
connections (Briand et al., 2007; Harley, 2004; Sara, 2009). All
three neurotransmitters are known to be released in response
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o novel stimuli, and have been linked to plasticity in the
rain.

Involvement of NE in eliciting novelty’s benefits seems inconsis-
ent with the pupillometry results of Naber et al. (2013). Typically,
upil dilation has been linked to NE release (de Gee et al., 2014;
ilzenrat et al., 2010; Jepma and Nieuwenhuis, 2011; Murphy et al.,
011, 2014). The data of Naber et al. (2013) thus suggest that subjec-
ive novelty correlates with low NE release, and low NE release with
etter encoding, however, they explained their findings in terms of
ariations in ACh.

Another reason to believe that NE nor ACh is crucial for nov-
lty’s effects on memory is the time scale on which the effects
ccur. Effects of ACh release have been argued to peak some two
econds after release (Hasselmo and Fehlau, 2001), while effects of
E release may  act on shorter time scales (Mongeau et al., 1997).

n contrast, exploring a novel environment can facilitate LTP induc-
ion minutes after a return to the home cage. If novelty would affect

emory on a time scale of seconds it would support a role for nor-
pinephrine or acetylcholine, while effects that last minutes would
avor involvement of the dopamine system. Indeed, effects of novel
nvironments one LTP induction have been argued to depend on
he activation of dopaminergic D1/D5 receptors (Li et al., 2003).

Effects of novelty on human memory have been reported for
oth short and long time scales. The Novelty Effect and the Von
estorff effect play out at the time scale of individual word presen-
ations (i.e., seconds), consistent with fast short-lived responses of
Ch or NE. However, both effects can be explained by mechanisms

hat have little to do with novelty itself. The Von Restorff effect has
een argued to be an effect of distinctiveness at test, rather than
ovelty during study (Dunlosky et al., 2000; Rangel-Gomez and
eeter, 2013). The Novelty Effect may  simply be proactive interfer-

nce: Items that are studied repeatedly for separate lists may  lead
o source discrimination problems, with memories from different
ists then interfering with one another at test (Dobbins et al., 1998).
n fact, the procedure followed in studies of the Novelty Effect is
quivalent to that of studies of proactive interference.

Effects that are more clearly linked to encoding all play out at
 longer time scale. Novelty-induced memory enhancements seen
n nonhuman animals depend on a long-lasting state that may  last
p till 30 min  after exposure to a novel environment (Li et al., 2003;
traube et al., 2003a). Exploration of novel versus familiar virtual
nvironments has been shown to improve recall in humans, up to
5 min  after exposure, indicating that the positive effects of novelty
n learning also linger for some time in humans (Schomaker et al.,
014b). Similarly, seeing novel scenes positively affected learning
en minutes afterwards (Fenker et al., 2008), but a recent attempt
o find a similar effect on an item-by-item basis failed (Rangel-
omez and Meeter, in submission). Such longer-term effects of
ovelty are most consistent with the idea that DA modulates the
ovelty-induced benefits for memory, as proposed by, among oth-
rs, Lisman and Grace (2005). Also other evidence has accumulated
or an important role of DA in increasing plasticity in the hippocam-
us (Jay, 2003; Lemon and Manahan-Vaughan, 2006; Li et al., 2003;
isman and Grace, 2005; Roggenhofer et al., 2010; Sajikumar and
rey, 2004). Together, these findings suggest that the same mecha-
ism underlies both the benefits of novelty for learning, and the
xploration bonus (Düzel et al., 2010; Blumenfeld et al., 2006;
isman and Grace, 2005).

. A framework for organizing novelty’s effects on brain
nd behavior
Please cite this article in press as: Schomaker, J., Meeter, M.,  Short- an
brain and cognition. Neurosci. Biobehav. Rev. (2015), http://dx.doi.org

In summary, novelty elicits strong responses across a wide
ariety of brain areas, and stimulates several neuromodulatory sys-
ems, affecting many aspects of cognition. Here, we  argued that
 PRESS
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the neurophysiological responses to novelty play out on different
time-scales, and that this can explain the differences in the timing
of novelty’s effects on different cognitive processes. The research
reviewed here suggests that these effects can be grouped into at
least three categories. The first two  consist of effects that occur
shortly after a novel stimulus is encountered. The third contains
longer-lasting effects.

First, the amygdala, mostly known by its role in processing
of emotion, responds strongly to novelty as well (Zald, 2003;
Blackford et al., 2010). Emotional stimuli are believed to enhance
visual perception by eliciting an attentional response by activating
the amygdala and its connections with early visual cortical areas
(Vuilleumier, 2005). Since novel stimuli can reliably activate the
same brain circuits as emotional stimuli, novelty could potentially
enhance perceptual processes via the same pathways. The effects of
emotion on visual perception are very fast; although the exact time-
course of these effects is not yet known, enhancements are typically
reported to occur in the first few hundred milliseconds after presen-
tation of an emotional stimulus (Sellinger et al., 2013). Novel stimuli
have been shown to have similar enhancing effects on perception
(Schomaker and Meeter, 2012). Although much remains uncertain,
we argued that the orienting of attention towards novel stimuli may
result from amygdalar activation affecting early sensory processing
regions in the brain.

Second, novel stimuli can activate the LC (a brain stem area that
is the exclusive supplier of NE in the forebrain), resulting in phasic
NE release peaking around 200 ms  following stimulus presenta-
tion (Aston-Jones and Cohen, 2005b; Mongeau et al., 1997). This
LC–NE system has been associated with arousal, but can also affect
behavior more selectively. The adaptive gain theory (Aston-Jones
and Cohen (2005a) posits that phasic NE release from the LC acts
as a temporal filter, facilitating task-relevant behavior by boost-
ing decision-making processes and suppressing non-target-related
brain activity. Novelty could thus potentially facilitate task perfor-
mance via this mechanism. Recent studies showed that new stimuli
can indeed facilitate responses, but that the effects depend strongly
on other factors. In fact, the speeding of responses seems to be a
response more to deviance than to novelty per se (Schomaker and
Meeter, 2014a). The same has been argued to be the case for the
novelty P3 ERP component (Schomaker et al., 2014c), suggesting a
possible common mechanism.

Third, mesolimbic dopaminergic system can be activated by
novelty. In contrast with the short-lived LC–NE response, dopami-
nergic responses elicited by novelty can be effective up to minutes
later (Li et al., 2003). After novelty detection, DA release from the
SN/VTA is believed to be triggered by a novelty signal from the
hippocampus (Lisman and Grace, 2005). Behaviorally, especially
spatial novelty has been shown to have enhancing effects on mem-
ory in animals (Davis et al., 2004; McGaugh, 2005; Uzakov et al.,
2005; Straube et al., 2003b), and humans (Fenker et al., 2008;
Schomaker et al., 2014b). These effects can be observed tens of
minutes after exposure.

7. Open issues

The framework discussed above summarizes many of the find-
ings on novelty processing. However, some links in the framework
are tentative, and many gaps remain.

In the current review we have linked distinct neuromodulatory
mechanisms to different behavioral effects of novelty. However,
direct evidence in humans linking these systems and their cognitive
d long-lasting consequences of novelty, deviance and surprise on
/10.1016/j.neubiorev.2015.05.002

effects is mostly lacking. More research is thus required to validate
our suggestions that the longer-lasting effects of novelty may  be
mediated by DA, and the short-lived effects by NE, ACh, or a mech-
anism activating limbic regions. Moreover, in many studies novelty,
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eviance, and surprise are confounded: New stimuli are often also
eviant or unexpected, or animals are unexpectedly placed in a new
nvironment. Therefore it is unclear whether novelty-induced DA,
E or ACh release is truly related to novelty, or is actually released

n response to deviance or to surprise. Future studies should thus
ake care to separate effects of novelty, deviance, and surprise.

Second, we have argued that effects of deviance are more in
ine with an arousal response (possibly associated with the LC–NE
ystem), whereas the effects of stimulus novelty are more in line
ith an attentional response. It has been argued that arousal is

haracterized by an increase in response readiness (Kahneman,
970; Posner and Boies, 1971) while attention is characterized by
n increase in perceptual sensitivity. If stimulus deviance indeed
ffects behavior through arousal, it should not ameliorate percep-
ual sensitivity, however, this has not yet been tested.

Third, some effects of novelty have been found mostly or exclu-
ively in studies investigating exploration of novel environments.
his raises the question whether either spatial novelty or the act of
xploring is qualitatively different than other forms of novelty, or
hether spatial novelty is merely a stronger novelty manipulation

han the presentation of a novel stimulus.
Fourth, we have linked both the novelty P3 and arousal

esponses to deviance from the context. However, it is unclear why
he brain responds differently to a deviant stimulus than to a nonde-
iant one. Two established mechanisms could mediate the effects
f deviance. The first is frequency of occurrence. The magnitude of
he P3b to targets is known to decrease as targets are spaced closer
ogether in time, presumably through some process of adaptation
o the target stimulus (Gonsalvez and Polich, 2002). It could be that
imilar adaptation processes operate at the category level. Since

 deviant category of stimuli is per definition less frequent in an
xperiment than standard stimuli, the brain could be less adapted
o stimuli from the deviant category, resulting in a larger brain
esponse to those stimuli. Alternatively, standard stimuli could set
xpectations that are violated by the deviant stimuli. Responses to
eviant stimuli could thus actually be responses of surprise, caused
y violations of expectations. Recent data from our lab suggests
hat both processes, adaptation and violation of expectations, inde-
endently contribute to the novelty P3 component (Meeter et al.,
014).

. Conclusion

Novel stimuli set off a cascade of responses in the brain, which
enerate a plethora of effects on cognition. Here, we  have argued
hat these effects can be grouped into three categories: An atten-
ional response to novelty, possibly mediated by the amygdala, an
rousal-like response to deviance, which could be mediated by the
oradrenergic system, and a slower upregulation of exploration,
otivation and learning, mediated by the dopaminergic system.
owever, many questions remain unanswered, providing fertile
round for years of future research investigating novelty and its
ffects on brain and cognition.
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